Perspectives from the ExaSMR Project: Nuclear Data Needs and Opportunities

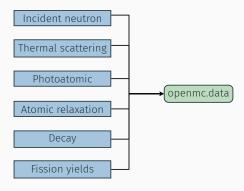
Paul K. Romano

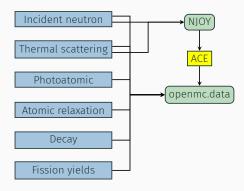
Computational Scientist, Argonne National Laboratory

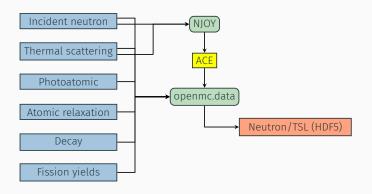
WANDA 2021: Advanced Computing for Nuclear Data Session January 29, 2021

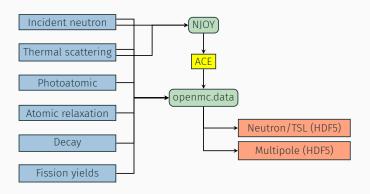
Background

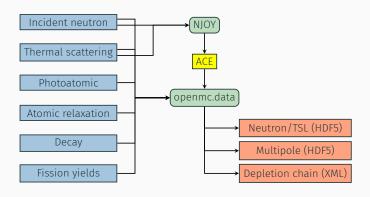
- ExaSMR project
 - Joint ORNL/ANL/MIT project on coupled Monte Carlo-CFD simulations for small modular reactors funded by the Exascale Computing Project
 - Several modeling challenges: small size results in large spatial gradients, natural circulation, no operational data
 - Use exascale resources to produce "virtual experiment" datasets that can be used to validate low-order engineering simulations
- · Software stack:
 - Particle transport: OpenMC (ANL/MIT) and Shift (ORNL)
 - Thermal hydraulics: Nek5000 / NekRS
 - · Coupling: ENRICO

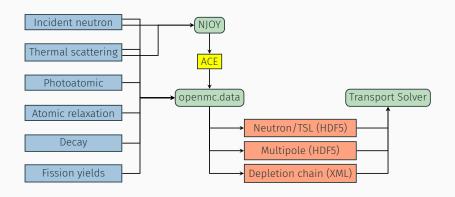

Background

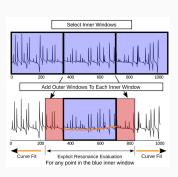

- ExaSMR project
 - Joint ORNL/ANL/MIT project on coupled Monte Carlo-CFD simulations for small modular reactors funded by the Exascale Computing Project
 - Several modeling challenges: small size results in large spatial gradients, natural circulation, no operational data
 - Use exascale resources to produce "virtual experiment" datasets that can be used to validate low-order engineering simulations
- · Software stack:
 - · Particle transport: OpenMC (ANL/MIT) and Shift (ORNL)
 - Thermal hydraulics: Nek5000 / NekRS
 - Coupling: ENRICO


Nuclear data considerations are crucial for particle transport


Computational Needs


- Current resources
 - · OLCF Summit: 200 PF, IBM POWER9 CPU, NVIDIA Volta V100 GPU
 - · ALCF Theta: 11.7 PF, Intel Xeon Phi CPU
- Future resources
 - · OLCF Frontier: > 1.5 EF, AMD EPYC CPU, AMD Radeon Instinct GPU
 - \cdot ALCF Aurora: \geq 1 EF, Intel Xeon CPU, Intel Xe GPU





Challenges: Complex Data Hierarchies

- · Both target exascale platforms are based on GPU architectures
- · Nuclear data is needed at many temperatures; large size of data
- · Data size can place a significant burden on I/O time
- Want to preserve fidelity of original data in ENDF; multitude of data formalisms pose programming challenges:
 - · Inability to use polymorphism
 - · Data transfer between host and GPU

Challenges: Temperature Dependence

- In the resolved resonance range, OpenMC/Shift rely on the windowed multipole method
 - Resonance parameters stored as complex poles/residues
 - Can analytically Doppler broaden cross sections
 - Significant reduce memory requirements but requires more operations to evaluate cross section
- Does not help in unresolved range or thermal energies

Opportunities: Machine Learning

- Temperature dependence of thermal scattering and unresolved resonance range:
 - Brute force interpolation on tables stored at many temperatures
 - Again, memory requirements quickly go up depending on temperature grid

Need innovations in methods for thermal scattering/URR \to Machine learning may be suitable given lack of theoretical models for temperature dependence

Opportunities: Model-based Physics

- · Evaluations continue to grow in size
- For HPC simulations, strong incentive to use less memory and more FLOPs
- Integrating model-based physics is very attractive for Monte Carlo transport simulations
 - · Multipole format is essentially just resonance parameters
 - · Fission event generators (FREYA, CGMF, GEF, etc.)
 - Thermal scattering physics with just phonon frequencies?
- · Better physics and better performance

Thank you!